Collapsing Non-deterministic Automata E0 222: ATC - Seminar

Sqn Ldr Aayush Tiwary Maj Abhishek Singh Maurya

December 8, 2013

Introduction

Isomorphism

NFAs are not necessarily unique up to isomorphism.

Figure: Two NFAs accepting same language

Both the NFA above cannot be further collapsed, but they are *not* isomorphic. Therefore, collapsing procedures of DFA cannot be applied

Binary Relation

Consider two NFAs,

$$M = (Q_M, \Sigma, \Delta_M, S_M, F_M)$$

 $N = (Q_N, \Sigma, \Delta_N, S_N, F_N)$

Then,

$$_lpha \overset{def}{\subseteq} Q_M imes Q_N$$

Binary Relation

For, $B \subseteq Q_N$,

$$C_{\approx}(B) \stackrel{def}{=} \{ p \in Q_M | \exists q \in B, p_{\approx}q \}$$

and , similarly defining $\mathit{C}_{pprox}(\mathit{A}), \mathit{A} \in \mathit{Q}_\mathit{M})$

(Here $C\approx(B) = \{p,q,r\}$ and $C\approx(A) = \{a,c\}$ from the above definition)

Figure: Binary Relation between two NFA

Extending this relation to the subsets of Q_M and Q_N

$$A_{\approx}B \stackrel{def}{\iff} A \subseteq C_{\approx}(B) \text{ and } B \subseteq B_{\approx}(A)$$

Bisimulation

The same relation can be called *Bisimulation* if it satisfies following properties:-

- 1. $S_{M\approx}S_N$
- 2. If $p_{\approx}q$, then $\forall a \in \Sigma$, $\Delta_M(p, a)_{\approx}\Delta_N(q, a)$
- 3. If $p_{\approx}q$, then $p \in F_M \iff q \in F_N$

Properties of Bisimulation

- Bisimulation is Symmetric
- ② Bisimulation is Transitive
- 3 Union of nonempty family of bisimulations between M and N is bisimulation between M and N

Bi-similar Automata accepts same set

Let \approx be the bisimulation between M and N. Then if $A_{\approx}B$ then

$$\forall x \in \Sigma^*, \hat{\Delta}_M(A, x)_{\approx} \hat{\Delta}_N(B, x)$$

Then we can say,

$$\forall x \in \Sigma^*, \hat{\Delta}_M(A, x) \cap F_M \neq \phi \iff \hat{\Delta}_N(B, x) \cap F_N \neq \phi$$

• Definition: An autobisimulation is a bisimulation between an automaton and itself.

- Definition: An autobisimulation is a bisimulation between an automaton and itself.
- Theorem: Any nondeterministic automaton has a coarsest autobisimulation \equiv_M which is a *equivalence* relation.

- Definition: An autobisimulation is a bisimulation between an automaton and itself.
- Theorem: Any nondeterministic automaton has a coarsest autobisimulation \equiv_M which is a *equivalence* relation.
- Lemma: A state of M is in support of all bisimulations of M iff it is accessible.

- Definition: An autobisimulation is a bisimulation between an automaton and itself.
- Theorem: Any nondeterministic automaton has a coarsest autobisimulation \equiv_M which is a *equivalence* relation.
- Lemma: A state of M is in support of all bisimulations of M iff it is accessible.
- We can, hence remove all inaccessible states in an NFA

• Let, $M = (Q, \Sigma, \Delta, S, F)$ be a NFA and let \equiv_M be the maximal autobisimilation on M

- Let, $M = (Q, \Sigma, \Delta, S, F)$ be a NFA and let \equiv_M be the maximal autobisimilation on M
- For $p \in Q$, let [p] denote the \equiv -equivalence class of p and \gtrsim be the relation relating p to its equivalent class

- Let, $M = (Q, \Sigma, \Delta, S, F)$ be a NFA and let \equiv_M be the maximal autobisimilation on M
- For $p \in Q$, let [p] denote the \equiv -equivalence class of p and \gtrsim be the relation relating p to its equivalent class
- For any $A \subset Q$, define $A' = \{[p] \mid p \in A\}$

- Let, $M = (Q, \Sigma, \Delta, S, F)$ be a NFA and let \equiv_M be the maximal autobisimilation on M
- For $p \in Q$, let [p] denote the \equiv -equivalence class of p and \gtrsim be the relation relating p to its equivalent class
- For any $A \subset Q$, define $A' = \{[p] \mid p \in A\}$
- Lemma: For all $A, IB \subset Q$,

- Let, $M = (Q, \Sigma, \Delta, S, F)$ be a NFA and let \equiv_M be the maximal autobisimilation on M
- For $p \in Q$, let [p] denote the \equiv -equivalence class of p and \gtrsim be the relation relating p to its equivalent class
- For any $A \subset Q$, define $A' = \{[p] \mid p \in A\}$
- Lemma: For all $A, IB \subset Q$,
 - $A \subseteq C_{\equiv}B \Leftrightarrow A' \subseteq B'$

- Let, $M = (Q, \Sigma, \Delta, S, F)$ be a NFA and let \equiv_M be the maximal autobisimilation on M
- For $p \in Q$, let [p] denote the \equiv -equivalence class of p and \gtrsim be the relation relating p to its equivalent class
- For any $A \subset Q$, define $A' = \{[p] \mid p \in A\}$
- Lemma: For all $A, IB \subset Q$,
 - $A \subseteq C_{\equiv}B \Leftrightarrow A' \subseteq B'$
 - $A \equiv B \Leftrightarrow A' = B'$

- Let, $M = (Q, \Sigma, \Delta, S, F)$ be a NFA and let \equiv_M be the maximal autobisimilation on M
- For $p \in Q$, let [p] denote the \equiv -equivalence class of p and \gtrsim be the relation relating p to its equivalent class
- For any $A \subset Q$, define $A' = \{[p] \mid p \in A\}$
- Lemma: For all $A, IB \subset Q$,
 - $A \subseteq C_{\equiv}B \Leftrightarrow A' \subseteq B'$
 - $A \equiv B \Leftrightarrow A' = B'$
 - $A \gtrsim A'$

- Let, $M = (Q, \Sigma, \Delta, S, F)$ be a NFA and let \equiv_M be the maximal autobisimilation on M
- For $p \in Q$, let [p] denote the \equiv -equivalence class of p and \gtrsim be the relation relating p to its equivalent class
- For any $A \subset Q$, define $A' = \{[p] \mid p \in A\}$
- Lemma: For all $A, IB \subset Q$,
 - $A \subseteq C_{\equiv}B \Leftrightarrow A' \subseteq B'$
 - $A \equiv B \Leftrightarrow A' = B'$
 - $A \gtrsim A'$
- Define Quotient automaton

$$M' \stackrel{def}{=} (Q', \Sigma, \Delta', S', F')$$

Where,

$$\Delta'([p], a) \stackrel{def}{=} \Delta(p, a)'$$

Minimality of M'

- The relation \gtrsim is a bisimulation between M and M'. So, M' accepts the same set as M.
- The only autobisimulation on M' is the identity relation. So, M' cannot be collapsed further.

Theorem

Let M be an NFA with no inaccessible states and let \equiv_M be the maximal autobisimulation on M. The quotient automaton M' is the minimal automaton bisimilar to M and is unique upto isomorphism.

Reference

[1] Dexter C Kozen, *Automata Theory and Computability*, pg 100 - 107.

